Fast generation of W states of superconducting qubits with multiple Schrödinger dynamics

نویسندگان

  • Yi-Hao Kang
  • Ye-Hong Chen
  • Qi-Cheng Wu
  • Bi-Hua Huang
  • Jie Song
  • Yan Xia
چکیده

In this paper, we present a protocol to generate a W state of three superconducting qubits (SQs) by using multiple Schrödinger dynamics. The three SQs are respective embedded in three different coplanar waveguide resonators (CPWRs), which are coupled to a superconducting coupler (SCC) qubit at the center of the setups. With the multiple Schrödinger dynamics, we build a shortcuts to adiabaticity (STA), which greatly accelerates the evolution of the system. The Rabi frequencies of the laser pulses being designed can be expressed by the superpositions of Gaussian functions via the curves fitting, so that they can be realized easily in experiments. What is more, numerical simulation result shows that the protocol is robust against control parameters variations and decoherence mechanisms, such as the dissipations from the CPWRs and the energy relaxation. In addition, the influences of the dephasing are also resisted on account of the accelerating for the dynamics. Thus, the performance of the protocol is much better than that with the conventional adiabatic passage techniques when the dephasing is taken into account. We hope the protocol could be implemented easily in experiments with current technology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of maximally entangled mixed states and disentanglement in coupled Josephson charge qubits

We analyze a controllable generation of maximally entangled mixed states of a circuit containing two-coupled superconducting charge qubits. Each qubit is based on a Cooper pair box connected to a reservoir electrode through a Josephson junction. Illustrative variational calculations were performed to demonstrate the effect on the two-qubits entanglement. At sufficiently deviation between the Jo...

متن کامل

Photon-Mediated Interactions: A Scalable Tool to Create and Sustain Entangled States of N Atoms

We propose and study the use of photon-mediated interactions for the generation of long-range steady-state entanglement between N atoms. Through the judicious use of coherent drives and the placement of the atoms in a network of cavity QED systems, a balance between their unitary and dissipative dynamics can be precisely engineered to stabilize a long-range correlated state of qubits in the ste...

متن کامل

Multi-level quantum description of decoherence in superconducting qubits

We present a multi-level quantum theory of decoherence for a general circuit realization of a superconducting qubit. Using electrical network graph theory, we derive a Hamiltonian for the circuit. The dissipative circuit elements (external impedances, shunt resistors) are described using the Caldeira-Leggett model. The master equation for the superconducting phases in the BornMarkov approximati...

متن کامل

Concurrent Remote Entanglement with Quantum Error Correction

Remote entanglement of distant, non-interacting quantum entities is a key primitive for quantum information processing. We present a new protocol to remotely entangle two stationary qubits by first entangling them with propagating ancilla qubits and then performing a joint two-qubit measurement on the ancillas. Subsequently, single-qubit measurements are performed on each of the ancillas. We de...

متن کامل

Dynamics of entanglement in realistic chains of superconducting qubits

The quantum dynamics of chains of superconducting qubits is analyzed under realistic experimental conditions. Electromagnetic fluctuations due to the background circuitry, finite temperature in the external environment, and disorder in the initial preparation and the control parameters are taken into account. It is shown that the amount of disorder that is typically present in current experimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016